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J-L López-Mart́ın†‡, E Lomba†, G Kahl‡, M D Winn‡§ and M Rassinger‡
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Abstract. We have extended an integral-equation approach (proposed by Winn and Logan,
and, in parallel, by Stratt and co-workers) for the determination of the electronic density of
states of disordered materials within the ‘tight-binding’ framework to the case of an sp3 model.
This formalism leads to a set of coupled complex-valued integral equations which turn out to be
formally equivalent to the Ornstein–Zernike equations of an ion–dipole mixture. As a closure
relation, which is required for the solution, we have used a linear relation. In order to check the
reliability of this approach we have complemented the integral-equation data with results from
a ‘tight-binding’ molecular-dynamics simulation. As an example we chose liquid silicon, using
the ‘tight-binding’ parametrization proposed by Goodwinet al. The agreement of the two sets
of data is very satisfactory.

1. Introduction

An integral-equation approach for the determination of the electronic structure of disordered
materials, proposed several years ago by Winn and Logan [1–3] and Stratt and co-workers
[4] has turned out to be an appealing and reliable tool for the determination of the electronic
density of states (DOS) of liquid and amorphous materials. Based on one hand on a ‘tight-
binding’ (TB) model for the electronic interaction and on the other hand on the structure of
the disordered system in terms of the pair distribution function (PDF)g(r), the formalism
leads to a complex-valued Ornstein–Zernike- (OZ-) type integral equation which has to be
solved together with a closure relation. From the solution of these equations it is then
possible to determine the electronic structure in terms of the DOS. Implementations of this
approach have been realized both for the one-band [5, 6] and the two-band model [5] using
the linear ‘single-superchain’/‘effective-medium’ approximation (SSCA/EMA).

In principle, it is straightforward to extend this integral equation to the four-band (sp3)
model: it turns out that the resulting set of integral equations is formally equivalent to
the OZ equations for an ion–dipole mixture (a simple model of electrolytes beyond the
primitive model). It should be mentioned here that for this model ananalytical solution
within the ‘mean-spherical approximation’ (MSA) [7, 8] is available for the fully symmetric
(equal-sized hard-spheres) case. In this contribution we go one step further and present
results obtained from anumerical treatment of the OZ-type equations, complemented by
the linear SSCA/EMA closure relation. Recently, we have reported the implementation of
an algorithm to solve this problem and given results for a ratheracademicmodel of Hg [9].
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While this paper was devoted to a presentation of the specific formalism and the numerical
solution algorithm, the present contribution deals with its application to a more realistic
problem, namely the determination of the electronic structure of liquid silicon.

As outlined in more detail by Virkkunenet al [10], ‘the proper physical description
of the properties of liquid silicon is a great challenge and also of substantial practical
interest’. The atomic and electronic structure of liquid silicon have been studied before
using different methods, such asab initio simulations [11–13] or TB molecular-dynamics
(TB-MD) simulations [10, 14, 15]. In a TB-MD simulation, the atomic and electronic
structures are determined simultaneously, the contribution to the atomic forces due to the
band-structure energy being calculated via the Hellmann–Feynman theorem. For silicon, a
very successful TB parametrization has been proposed by Goodwinet al [16] (based, in turn,
on a parametrization by Harrison [17]). In the present paper, we use our integral-equation
approach to determine the electronic structure; in order to check the reliability and accuracy
of our results we have also performed TB-MD simulations, using a 256-particle sample.

Comparison of the integral-equation results and the simulation data shows very
satisfactory agreement. Since the TB-MD method is known to compare well toab initio
simulations, we can conclude that this integral-equation approach represents a powerful
and reliable complement toab initio [11, 12, 18] simulations in determining the electronic
structure of disordered materials. As to the atomic structure, the approach presented herein
relies on external input, and unlike the simulation it cannot be determined within this
treatment. This limitation might in principle be overcome by an extension of the self-
consistent procedure that has already proven efficient in simple one-band fluids [19].

The paper is organized as follows: in the next section we briefly present the integral-
equation approach (leaving, however, technical details to the previous contribution [9]),
and we specify the TB model used for liquid Si and give some details about the TB-MD
simulation. In section 3 we discuss the results and the paper is closed with concluding
remarks and prospects for the future.

2. Theory

2.1. The integral-equation approach

In our approach we consider a disordered medium which is described by a ‘tight-binding’
(TB) Hamiltonian of the form

H =
∑
i;α
εαi a

†
iαaiα +

∑
i 6=j ;α,β

V αβ(rij )a
†
iαajβ . (1)

i andj characterize the sites andα, β describe the electronic levels (s and p basis functions)
located on each site and theV αβ(rij ) are the transfer-matrix elements (TME). In this study
we will restrict ourselves to off-diagonal disorder, and henceεαi = εα. We have furthermore
considered a two-centre approximation, i.e., we have neglected crystal-field and three-centre
integrals, as well as the non-orthogonality of the basis-functions. Under these conditions
the above Hamiltonian can be split into intra- and interatomic components

H =
∑
i 6=j

Hij +
∑
i

Hii . (2)

Following Slater and Koster [20], these terms can be rewritten—and using the notation
of [9]—as

Hii = εsa†isais + εp
∑

µ=x,y,z
a
†
ipµ
aipµ (3)
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Hij = V ss(rij )a†isajs + V spσ (rij )a†isajp · r̂ij + V psσ (rij )r̂ij · aipa†js
+ V ppπ (rij )(a

†
ip · ajp)+

[
V ppσ (rij )− V ppπ (rij )

]
(a
†
ip · r̂ij )(r̂ij · ajp) (4)

with

r̂ij = rij /|rij |. (5)

We are now interested in the ensemble-averaged off-diagonal (diagonal) Green-function
Ḡαβ(r12, z) (Ḡαβ(z)). It can be shown [1, 9] that the following equation can be deduced:

zαḠ
αβ(z) = δαβ + ρ

∑
γ

∫
dr2 V

αγ (r12)Ḡ
γβ(r21, z) (6)

whereρ is the number density of the system.
Using graph-theoretical methods one may show that the off-diagonal Green function

can be expressed as [1, 21]

Ḡαβ(r12, z) =
∑
γ δ

Ḡαγ (z)Hγδ(r12)Ḡ
δβ(z) (7)

where the spatial dependence is now transferred to the functionHαβ(r12). This function, in
turn, can be split into sets of diagrams with and without bridge points [1, 3], thus defining
functionsCγδ(r12) that correspond to the direct correlation function in liquid-state physics;
Cγδ(r12) andHγδ(r12) are thus linked by an OZ-type equation:

Hαβ(r12) = Cαβ(r12)+ ρ
∑
γ δ

∫
dr3 H

αγ (r13)Ḡ
γ δ(z)Cδβ(r32). (8)

It should be noted that neitherHαβ(r12) nor Cαβ(r12) are spherically symmetric.
Eliminating the off-diagonal Green function in (6) by means of (7) we obtain (using the

compact matrix formulation introduced in [9]) the additional relation

zḠ(z) = I+ ρ
∫

dr2 V(r12)Ḡ(z)H(r21)Ḡ(z) (9)

whereI stands for the unit matrix. The OZ-type equations (8) have to be supplemented by
a closure relation; in this contribution we have used the linear SSCA/EMA closure, i.e.,

Cαβ(r12) = g(r12)V
αβ(r12)+ [g(r12)− 1][Hαβ(r12)− Cαβ(r12)]. (10)

g(r) is the PDF characterizing the structure of the disordered medium.
In the SSCA/EMA approximate theory (though not in the general theory of [1]) the

structure of the disordered medium is represented at the level of two-particle correlations,
namely the PDFg(r). In the present calculation, the PDF was taken from the TB-
MD simulation (see below) which incorporates the many-body Hellmann–Feynman forces
appropriate to liquid Si. After some manipulation it becomes obvious that the problem of
solving equation (8) is now formally equivalent to the solution of the OZ equation for an
ion–dipole mixture of liquid-state physics. Drawing on parallels developed for this problem
[22] we can obtain a numerical solution of this complex-valued OZ-type equation (for details
we refer the reader to [9]).

Once we have solved these equations we obtain the DOSD(E) via

D(E) = − lim
ε→0+

1

π

[
Ḡss(E + iε)+ 3Ḡpp(E + iε)

]
. (11)
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2.2. The parametrization for silicon

In the present work we have used the empirical TB Hamiltonian proposed by Goodwinet al
[16] for silicon, which, in turn, is based on a model proposed by Harrison [17], rescaling
the TMEs by a smoothed step function:

V ss(r) = V ss(r0)f (r)
V ppσ (r) = V ppσ (r0)f (r)

V ppπ (r) = V ppπ (r0)f (r)

V spσ (r) = V spσ (r0)f (r)
V psσ (r) = −V spσ (r)

(12)

with

f (r) =
(
r0

r

)2

exp

{
2

[
−
(
r

rc

)nc
+
(
r0

rc

)nc]}
. (13)

The numerical parameters of this parameterization were taken from Virkkunenet al
[10]:

V ss(r0) = −1.820 eV V spσ (r0) = 1.960 eV

V ppσ (r0) = 3.060 eV V ppπ (r0) = −0.870 eV

εs = −6.173 eV εp = 2.122 eV

rc = 3.6 Å nc = 6.48.

(14)

r0 = 2.35 Å is the equilibrium nearest-neighbour distance of the diamond lattice.
The repulsive energyUrep is constructed from a sum of two-centre potentials:

Urep=
∑
i,j ;i 6=j

8(rij ) (15)

where the following expression has been used for8(r):

8(r) = 8(r0)
(
r0

r

)4.54

exp

{
4.54

[
−
(
r

rc

)nc
+
(
r0

rc

)nc]}
. (16)

8(r0) = 3.4581 eV, andrc andnc are given in (14).
In this contribution silicon was studied at a temperature of 1740 K and a mass density

of 2590 kg m−3, i.e., at a state close to the triple point.

2.3. The ‘tight-binding’ molecular-dynamics simulation

The TB-MD simulation is based on a classical standard MD simulation for a system ofN

particles. The forces acting on the particles are put together on the one hand from the forces
resulting from the repulsive energy (15) and on the other hand from the Hellmann–Feynman
forces (see, e.g., [23]), which—as the most time-consuming part of the simulation—are
obtained by an exact diagonalization of the 4N × 4N Hamilton matrix, built up by the
TMEs V αβ(rij ).

Introducing periodic boundary conditions makes the diagonalization of the Hamilton
matrix in q-space more convenient [24]. Little is known on the dependence of these results
on the choice of theq-vectors for afinite number of particlesN in the simulation cell (for
N →∞ the results should be independent ofq). In the present work we found that even
just oneq-vector (i.e., the0 point) turns out to be sufficient.
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The eigenvalues of the Hamilton matrix determined in this way, and averaged over a
sufficient number of atomic configurations, yield the DOS results of the simulation. In
practice, the Hellmann–Feynman forces have been calculated in every time step1t , while
the determination of the DOS was done every 101t .

Starting from an fcc lattice of 256 particles the system was melted at a temperature of
2700 K and was then cooled down to the desired temperature of 1740 K. After equilibration
at this temperature the production job extended over 50001t with 1t = 1 fs.
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Figure 1. Total (top) and partial (middle; s contribution; bottom: single-orbital p contribution)
DOS as obtained from the integral-equation approach (full lines) and the TB-MD simulation (◦).

3. Results

In figure 1 we compare the results for the DOS obtained in the integral-equation approach
with data calculated in the TB-MD simulation; we display both the total DOS as well as the
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partial s and p contributions. The DOS terminates at high energies because of the limited
basis set employed. The Fermi energy however lies well within the band, confirming that
liquid Si is metallic. Agreement is very satisfactory and thus proves the reliability of the
integral-equation approach. Comparing the required CPU time for the two methods we
find that the latter is at least two orders of magnitude faster; this should encourage future
applications of the integral-equation approach to similar problems. The CPU time required
by the TB-MD simulation depends of course on the size of the simulation cell employed;
in contrast, the integral-equation results are, by construct, for an infinite system.

0.0 1.0 2.0 3.0 4.0 5.0 6.0
r

0.0

1.0

2.0

3.0

g(
r)

ab initio
TBMD
experimental

Figure 2. The PDF for liquid Si as obtained from the present study and fromab initio simulations
in comparison with experimental scattering data [13, 25]; for the interpretation of the curves,
see the key.r is in units of Å.

The PDF as obtained from the TB-MD simulation (figure 2) is in reasonable agreement
with other theoretical studies [15, 12, 13] and with experimental neutron-scattering data
[25] (quoted in [13]); differences have to be attributed to size effects. On the other hand it
should be pointed out that a ‘better’ PDF obtained for instance from a larger sample would
modify the integral-equation results for the DOS only marginally, since the DOS is rather
insensitive to small changes in the structure.

4. Conclusion and outlook

We have shown that an integral-equation approach for calculating the electronic DOS of
a liquid is able to give reliable and accurate results which compare well with TB-MD
simulation data. Future work in this field will be devoted to the following topics.
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(i) In order to describe the atomic and electronic structure of a liquidself-consistentlywe
plan (as outlined for the one-band case in [19]) to integrate this integral-equation approach
into an iterative procedure: starting, e.g., from the repulsive potential energyUrep we
construct via some integral-equation method the atomic structure of the system in terms
of the PDF; this information is fed into the closure relation and the electronic DOS is
calculated as outlined in this contribution. From the electronic structure we calculate the
corresponding contribution to an effective pair potential (the exact contribution is a many-
body one), which yields a new effective interaction. For this potential the atomic structure
is calculated again; the procedure is iterated until self-consistency is achieved, i.e., until the
interactions of two subsequent steps coincide in the numerical sense. Previous results for
the one-band case have shown that convergence is rather fast.

(ii) It is well known [26, 27] that the linear closure used in the present contribution
leads to less reliable results in the low-density regime. This is however less relevant for
the densities of interest when considering liquids and amorphous materials, except for the
high-energy wings of the spectra that are typically missing in linear approximations, and
that in other problems might be quite important [9, 27]. In this connection, a non-linear
correction along the lines devised in [27] is currently under investigation for sp3 TB models.

Concluding, we think that this method, along with the two amendements mentioned
above, would represent an attractive and less time-consuming complement to TB-MD or
evenab initio simulations.
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